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Chapter 15

Exploiting replication in
distributed systems

K. P. Birman and T. A. Joseph

15.1 Replication in directly distributed systems

This chapter examines techniques for replicating data and execution in direcly
distributed systems: systems in which multiple processes interact directly with one
another while continuously respecting constraints on their joint bchaviour.
Directly distributed systems are often required to solve difficult problems, rang-
ing from management of replicated data to dynamic reconfiguration in response
to failures. It will'be shown here that these problems reduce to more primitive,
order-based consistency problems, which can be solved using primitives such as
the reliable broadcast protocols discussed in-Chapter 14. Morcover, given a sys-
tem that implements reliable broadcast primitives, a flexible set of high-level
‘tools’ can be provided for building a wide variety of directly distributed applica-
tion programs.

15.1.1 Using replication to enhance availability and fault-tolerance

Replication is often central to solving distributed computing problems. For
example, modularity and price-performance considerations argue for decentrali-
zation of software in factory automation settings. However, many factories con-
tain devices controlled by dedicated processors that require real-time response.
Any delay imposed on the controllers by the network must be bounded. In a
system where data is not replicated or cached, this would be hard to guarantee
because of possible packet loss and unpredictable load on remote servers. Distri-
buted real-time systems thus need ways to replicate information that may be

needed along time-critical paths.
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Replication can be a powerful tool for solving other types of problems. For
example, in a factory automation setting, distributed execution may be used by
applications that need to subdivide tasks by concurrently allocating multiple
processes (or multiple devices) to a single piece of work. In order to distribute
the execution of a single request over a set of high-speed processes, however, one
must also replicate any information that they use to coordinate their actions. A
centralized ‘coordinator’ would represent a single point of failure and a potential
performance bottleneck.

Fault-tolerance requirements arc another major reason for replicating data.
In a non-distributed setting a failure rarely affects anything but the user of the
crashed program or machine. In a network, however, the effects of a crash can
ripple through large numbers of machines. A program that will survive the
failures of programs with which it interacts must have access to redundant copies
of critical resources and ensure that its state is never dependent, even indirectly,
on information to which only the failed program had access. It may also be
necessary to maintain backup processes that will take over from a failed process
and complete time-ritical computations or computations that have acquired
mutual exclusion on shared resources.

15.1.2 Theu-adeoﬂ'betweensharedmemoryaudmuagepusing

At the heart of any distributed system that distributes or replicates information is
the problem of transferring information between cooperating processes. Broadly
speaking, this can be done in one of two ways: by permitting the processes to
interact with some common but passive resource or memary, or by supporting
message exchange between them. There are advantages and disadvantages asso-
ciated with each approach, hence the most appropriate style of information
transfer for a particular problem must be determined by an analysis of the
characteristics of that problem. For example, most database systems use the
shared memory paradigm. In other settings, however, a shared resource might
represent a bottleneck that could be avoided using replication and direct
message-based interactions between the processes using that resource.

This point is important because the approach used to replicate data depends
strongly on the way in which processes will interact. For example, considerable
recent work (Rashid e al. (1987)) has been invested in the development of distri-
buted virtual memory schemes, an approach introduced in the Apollo Domain
operating system (Apollo (1985)). Synchronization in such systems is often based
on transactional approaches, such as the database replication techniques
described in Chapter 12. The shared-memory approach to replication and syn-
chronization thus leads to a whole school of thought concerning distributed pro-
gram design and development.

As noted carlier, in this chapter applications in which processes interact
directly with one another and where the actions taken by one process may be
explicitly coordinated with those taken by another process are of particular
interest. The style of distributed programming needed to support this sort of
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application, and the most appropriate tools for implementing it, are substantially
different than for the shared memory and transactional case.

Below, we start by identifying a set of characteristics of problems that call for
direct interactions or cooperation between the processes that solve that problem.
This characterization leads to a list of services that a directly distributed system
may require. Next, we look at a number of systems in order to understand how
they address the problems in this list. Finally, we examine a particular model
for solving these problems in a message-passing environment and a set of solu-
tions that can be casily understood in terms of this model.

15.1.3 Assumptions and limitations

Although this chapter explores a number of approaches to replication and distri-
buted consistency, some assumptions are made that limit the applicability of the
treatment. The model used here is intended to match a typical local area net-
work or a loosely coupled multiprocessor. The programs and computers in such
systems fail benignly, by crashing without sending out incorrect messages. Pro-
cessors do not have synchronized clocks, hence the failure of an entire site can
only be detected unreliably, using timeouts. Message communication is assumed
to be reliable but bursty, because packets can be lost and may have to be
retransmitted.

Two major problems that arise in LAN settings will not be considered here.
The first is network partitioning, where the network splits into subnetworks
between which communication is impaired (for example, if a LAN bridge fails).
Providing replication that spans partitions is a difficult problem and an active
rescarch area. Secondly, problems that place real-time constraints on distributed
algorithms or protocols will not be discussed here. Real-time issues are hard to
isolate; once they are introduced, the entire system must often be treated from a
real-time perspective. That is, although our methods are potentially useful in
systems for which a real-time constraint leads the designer to dedicate a com-
puter to some device, it will be assumed that the real-time aspects of such prob-
lems do not extend beyond the control program itself.

15.2 Consistent distributed behaviour in distributed systems

When processes cooperate to implement some distributed behaviour, an impor-
tant issue is to ensure that their actions will be ‘mutuaily consistent’. Not
surprisingly, the precise meaning that one attaches to consistency has important
implications throughout a distributed systems that presents coordinated
behaviour. As shown in previous chapters, transactional serializability is a
widely accepted form of consistency. In intuitive terms, a transactional system
acts as if processes execute one by one, with each process modifying data objects
in an atomic way that can be isolated from the actions taken by other processes.
This leads to a natural question: should al/ types of distributed consistency be
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viewed as variant forms of transactional consistency, or are there problems that
can only be addressed using other methods?

Looking at the factory automation setting, one finds that whereas shared
shared memory problems fit well into the standard transactional framework,
directly distributed problems generally do not. Consider the following two
examples:

® Butld software for monitoring job status and materials inventories. Updates will be
done by the warehouses (quantities on hand), “cell controllers’ (requests for materials and
changes tn job status), and from a central management site (changes in prices, delivertes
Jrom suppliers, changes tn job prionties, and 0 on). Queries will be done from
managerial offices throughout the factory complex.

® Deuelop software for a cell controller operating a set of drills. Each dnill is tndepen-
dently controlled by a dedicated microprocessor. The cell as a whole recetves a prece of
work to do, together with a list of locations, sizes and tolerances for the holes to be
drilled. It must efficiently schedule this work among the drills. Drills can go offfine Jor
matntenance or because of bits breaking, or come onltne while the cell is active, hence the
scheduling problem is dynamuc. Some drills are better suited to heavy low-precision
work, while others are suitable for lighter high-precision work. Finally, it is cnitical no
hole is dnlled nuice, even if a drill bit breaks before it is fully drilled, because this
would result tm a very low precision. Instead, an accurate list of partially drilled holes
should be produced for a human technician to check and redrill manually.

These two problems illustrate very different styles of distributed computing, and
distributed consistency means something different for each. The former clearly
lends itself to a transactional shared memory approach. One would configure
the various programs into a ‘star’, with a database at the centre, perhaps repli-
cated for fault-tolerance. Programs throughout the network interact through the
database. Transactions are the natural consistency model for this setting. The
cssential observation to make is that the processes share data but are independent.
By adopting a transactional style of intcraction, they can avoid tripping over one
another. Moreover, transactions provide a simple way to ensure that even if
failures occur, the database remains intact and consistent.

Now consider the second problem. A star configuration seems much less
natural here. The processes in a decentralized cell controller will need explicit
knowledge of one another in order to coordinate their actions on a step-by-step
basis. They need to reconfigure in response to events that can occur unpredict-
ably, and to ensure the consistency of their views of the system state and one-
another’s individual states. When a control process comes online after being
offline for a period of time, it will have to be reintegrated into the system, in a
consistent way which may have very little to do with its state at the time of the
failure. When a process goes offline, the processes that remain online need to
assume responsibility for finishing any incomplete work and generating the list of
holes to be manually checked. Moreover, it is not reasonable to talk about
‘aborting’ partially completed work, since this could result in redrilling a hole.
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What should consistency mean in problems like this? All of the above con-
siderations run contrary to the spirit of a transactional approach, where the goal
is serializability — non-interference between processes. A process in a trans-
actional system is encouraged to run as if in isolation, whereas the cell controller
involves explicit interactions and interdependencies between processes. Trans-
actions use aborts and rollback to recover from possibly inconsistent states, but
in this example, rollback is physically impossible. On the other hand, although
the kind of consistency required here may not be transactional, one would not
want to go to the extreme of concluding that there is no meaningful form of con-
sistency that applies in this setting. Certainly, there should be a reasonable
‘explanation’ for what each control process is doing, and this explanation should
be in accordance with the cell controller specification. However, the explanation
should be one that holds entinuously, not just for ‘committed’ operations as in
case of transactions. That is, a set of drills that operate concurrently should
behave in mutually consistent ways at all times.

This leaves us with two choices. One option is to look at how the trans-
actional model could be extended to cover these new requirements. The idea of
extending transactions is hardly a new one, and has previously led to mechan-
isms like top-leve! transactionst (Liskov et al. (1987)), mixtures of serializable and
non-serializable behaviours (Herlihy (1986a); Lynch, Blaustein, and Siegel
(1986)), and specialized algorithms for concurrently accessing data structures
like B-tree indexes. The trouble is that these introduce complexity into a model
that was appealing for its simplicity. Moreover, these methods have been
around for some time, and have proved appropriate only for a narrow set of
problems. The second option — pursued here — is to develop a different style
of distributed computation better matched to problems like the ones arising in a
cell controller. The focus of this style of computation will be on enabling pro-
grams to rcason consistently about one-another’s states and actions.

15.3 A toolkit for directly distributed programming

One can think of a system that implements transactions as a collection of tools
for solving problems involving shared data. These tools provide for synchroniza-
tion, data access and update, transaction commit, and so forth. In this section,
the problem of building directly distributed software by postulating a set of tools
for helping directly distributed processes to coordinate their actions is discussed.
Later, a variety of systems will be examined in the light of how close they come
to solving these problems.

t A top-level transaction is emsentially a way of sending a message from ‘within’ the scope of an un-
comumitted transaction to other transactions running outside that scope. It provides an cscape from
the shared memory paradigm into the mesmage passing one. The fact that such a mechaniam is
needed within transactional systems is strong cvidence that no single approach addresses all types of
distributed system.



324 K.P. BIRMAN AND T. A. JOSEPH

15.3.1 Components of the toolkit

What sorts of tools would the builder ¢ a directly distributed system need?
Although .0t exhaustive, the list of tools that follows is intended to be fairly
extensive.

®  Process groups: A way to form a. association between a set of processes
cooperating to solve a problem.

® Group communication: A location-transparent way to communicate with
the members of a group or a list of groups and processes. In some systems,
group communication consists only of a way to find some single member of
a named group. In others, communication is broadcast-orientedt and
atomic, meaning that all members of the destination group receive a given
message unless a failure occurs, in which case either all the survivors receive
it or none does. A problem that must be addressed is how group communi-
cation should work when the group membership is changing at the time the
communication takes place. Should the broadcast be done before the
change, after it, or is it acceptable for some group members to observe one
ordering and some the other? Should message delivery to an unresponsive
destination be retried indefinitely, or eventually interrupted — with the
attendant risk that the destination was just experiencing a transient failure
and is actually still operational? We will see that the way in which a sys-
tcmrcsolvad)eleiuuacanlimitthetypcofproblemthatproomgmupu
in the system can be used to solve.

® Replicated data: A mechanism permitting group members to maintain
replicated data. Most approaches provide a 1-copy consistency property,
analogous to 1-copy serializability.

® Synchronization: Facilities for synchronization of concurrent activities that
interact through shared data or resources.

® Distributed execution: Facilities for partitioning the work required to solve a
problem among the members of a process group.

® State monitoring mechanisms: Mechanisms for monitoring the state of the
system and the membership of process groups, permitting processes to react
to the failure of other group members.

® Reconfiguration mechanisms: Facilities with which the system can adapt
dynamically to failures, recoveries. and loau changes that impact on work
processing strategies.

t A group broadcast should not be confused with a hardware broadcax. A group broadcast pro-
vides a way to communicate with all members of some group. It may or may not make use of
hardware facilities for broadcasting to all the machines connected to a local area network. Here, un-
less it is explicitly indicated that a hardware broadcast is being discussed, the term broadcast will al-
ways mean broadcast to a group.
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® Recovery mechanisms: Mechanisms for automating recovery, which could
range from a way to restart services when a site reboots to facilities for rein-
tegrating a component into an operational system that is actively engaged
in distributed computations.

15.3.2 Consistency viewed as a tool

Let us return to the issue of consistency. In the context of a set of tools, a
mechanism that provides for consistent behaviour can also be understood as a
sort of tool, but it is a more abstracted one than the sorts of ‘tools that do
specific things’ listed above. For example, in a shared memory setting, consistent
behaviour generally means that the accesses made to the data by client pro-
grams are secrializable (Bernstein and Goodman (1981)), and that some invariant
holds on the state of programs themselves. Ser..iizability is thus a tool for build-
ing transactional systems. In a directly distributed setting, there is no data
manager or shared data items, and hence the serializability constraint is lost.
Nonetheless, one needs a way to establish that the processes in the system, taken
as a group, satisfy some set of system-wide invariants in addition to local ones on
their states.

Any notion of distributed consistency will be incomplete unless it takes into
account the asynchronous nature of the systems in question. In particular, a
definition of consistency based on respecting global properties or invariants must
somechow take time into account. When one says that two actions taken at
different locations are in accord with a global predicate, that statement will have
no meaning until it is decided when the predicate should be evaluated. This
temporal dependency is particularly striking if the notion of consistency changes
while the system executes. Thus, consistent behaviour in an idle cell controller is
quite different from consistent behaviour while work is present. Taking a more
extreme example, consistent behaviour of a distributed program for controlling a
nuclear reaction means one thing during normal operation, but something
entirely different if a cooling pump malfunctions. Since the switch from one rule
to another cannot occur instantaneously, a notion of consistency both simple and
‘dynamic’ is needed.

Distributed systemns designers have approached the consistency issue in several
ways. Much theoretical work starts with a rigorous notion of distributed con-
sistency. However, this work often relies on simplified system models that may
not correspond to real networks. For example, the theoretical study of Byzantine
agreement establishes limits on the achievable behaviour of a distributed agree-
ment protocol. The failure modes permitted include malicious behaviours that
real systems do not experience, and the model assumes that all processors share a
common clock (so that they can run in lock-step). Unfortunately, however, real
systemns generally have multiple, independent processor clocks. Even if this were
not the case, the cost of Byzantine agreement turns out to be very high. Simi-
larly, innumerable papers have presented complex protocols to solve distributed
problems, remarkably few of which have ever been implemented. Any
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practitioner who scans the literature discovers that many of these are in fact not
‘implementable’ because they make unrealistic assumptions.

At the other extreme, most existing ‘distributed’ operating systems provide lit-
tle more than a message-passing mechanism, often only available through a
cumbersome and inflexible communication subsystem. Systems like this simply
abandon any rigorous form of consistency in favour of probabilistic behavioural
statements. When attempts have been made to formally specify the behaviour of
real distributed systems, the results have often included so much detail that it
becomes hard to separate the abstract behaviour of the system from the imple-
mentation and interface it provides. Thus, a formal specification of a distributed
system often includes details of how the message channels work, how addressing
is handled, and so forth. While this information is unquestionably of value in
designing applications that depend on a precise characterization of system
behaviour, high level issues such as ‘consistency’ are obscured by such a treat-
ment. As we will see, few of the problems in our list could be solved using a
message-passing approach, and a highly detailed formalism describing exactly
how the message-passing mechanism works offers little help.

An intermediate approach, which will be adopted here, restricts system
behaviour in order to simplify the solutions to problems like the ones that arise in
the toolkit. On the one hand, these restrictions must be efficiently implementable.
On the other, it must be possible to talk in abstract terms about how distributed
programs exccute in the system, what it means for them to behave consistently,
and how consistency can be achieved. Specifically, given a distributed systemn, it
should be possible to describe its behaviour formally in a way that will help estab-
lish the correctness of algorithms that run under it. If this requires restrictions on
the permissible behaviour of the system, it will be necessary to understand how
those restrictions can be enforced and how weak they can be made.

15.3.3 Other properties needed in a toolkit

More will be needed than a set of tools if the intention is to solve real-world dis-
tributed computing problems. Questions of methodology, efficiency of the imple-
mentation, and scalability must also be addressed. For example, it is easy to
solve database problems using transactions. To be able to say the same about
directly distributed software, one would need to demonstrate that the tools lead
to a natural and intuitive programming style in which problems can be isolated
and solved one by one, in a step-wise fashion. Also, it must be casy to establish
that the solutions will tolerate the concwrrency and configuration changes
characterizing asynchronous distributed systems. That is, given a notion of con-
sistency, it should be reasonably easy to establish that a particular system in fact
achieves consistent behaviour.

We will also want to pose questions about the extent to which the tools
influence cach other. Ideally, one would want tools that operate completely
independently from one another. Otherwise, by extending the functionality of a
system in one way, one would risk breaking the preexisting code. As we will see,
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‘orthogonality’ of a set of tools is arrived at using mechanisms closely related to
the ones by which consistency is achieved.

Efficiency is also an important consideration. Nobody will use a set of tools unless
it yields programs that perform as well (or better) than software built using other
methods. Moreover, the absolute level of performance achieved must be good
enough to support the kinds of applications likely to employ direct distribution.

A final issue relates to questions of scale. Our tools treat direct distribution as
a problem ‘in the small’. One also needs to construct larger systems out of com-
ponents built using these tools, in a way that isolates the larger-system issues
from the implementation of the directly-distributed components of which it is
built. Otherwise, it may be impractical to talk about system design and inter-
face issues without simultaneously addressing implementation details.

15.4 System support for direct interactions between processes

A variety of existing systems provide facilities that could be used when building
directly distributed software. Below, we look at how close these come to address-
ing the major items in our list of tools.

15.4.1 Basic RPC mechanisms and nested transactions

Most operating systems provide remote procedure calls (Birrell and Nelson (1984)).
The technological support for remote procedure calls has advanced rapidly dur-
ing the past decade, and sub-millisecond RPC times for inter-site communication
should be common in operating systems in the near future. RPC does not, how-
ever, address any of the problems in the above list. Thus, the programmer, con-
fronted by a direct distribution problem, would be in a very difficult situation
when using a system in which RPC is the primary communication mechanism.
Short of building a complex application-level mechanism to resolve these prob-
lems, there would seem to be no way to build directly distributed software using
an unadorned RPC facility.

To make this more concrete, let us consider a specific problem that might arise
in the context of the toolkit. Among the many issues that the tools must address, a
key problem is to synchronize the actions of a set of processes that are performing
some action concurrently. This is an instance of the well-known ‘mutual exclu-
sion’ problem, and there is no doubt that any system supporting direct interactions
between processes will need a mutual exclusion mechanism. A typical solution
might implement a token managed with rw.c like the following:

A set of processes shares exactly one copy of a token, using operations to pass and request
. If the holder of the token fails, a pass is done automatically on its behalf, in such a
way that the token is never permanently lost unless all processes fail, and duplicate
tokens never arise within the operational set. New processes can join the set dynami-
cally.
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How v .id one go about solving this problem using remote procedure calls?
Typical i C implementations detect failures using timeouts. Since timeouts can
be inaccurate, an agreement protocol is nceded to deal with token-holder
failures. For example, one could try to inform all operational processes of each
pass so that they know which process to request the token from. However, in
addition to the inaccuracy of the failure detection mechanism, the solution must
deal with the possibility that the token could be in motion at the time of a
request. Dynamic group membership changes make these problems even more
complicated.

Although there are several systems that extend RPC to deal with failures and
concurrency, their orientation has been towards the shared memory paradigm,
by extending RPC into a form of nested transaction. In a sense this is not surpris-
ing, since RPC is a pairwise mechanism in which the caller is the active partici-
pant and the called process is passive until it receives a request from the caller
— a structure strongly evocative of the relationship between a transaction
manager and a set of data managers on which it performs operations in a data-
base setting. The ARGUS language and the CAMELOT system both take this
approach, with ARGUS focusing on linguistic aspects of the problem and
CAMELOT on performance and on creative use of virtual memory mechanisms,
For brevity, ncither of these systems will be discussed in detail here. However, it
is important to recognize that the token passing problem remains difficult to
solve in cither system, and the same can be said for many (not all!) of the other
tools in our list. The reader may want to try and design a token passing proto-
col using any of these approaches (pure RPC, ARGUS or CAMELOT):
although feasible, it isn’t easy!

Token passing is just a simple example of the sorts of problem that a directly
distributed system would have to solve. In a setting where token passing is
difficult, the implementation of complex directly distributed systems will surely
be impractical. Some experimental evidence to support this claim exists: many
systems support RPC but few provide mechanisms like the token passing facility
outlined above. One system that does, at least internally, is Digital Equipment’s
VAX-Clusters system, which uses a locking facility similar to the token mechan-
ism (Kronenberg, Levy, and Strecker (1986)). However, the lock manager
implementation is complex, and few application designers could undertake a
similar effort.

15.4.2 Quorum replication methods

Many database systems manage replicated data using quorum schemes (see
Chapter 13). Quorum mechanisms support replicated data without the added
‘baggage’ of a full-blown transactional system. Do they offer an appropriate
primitive on which to base a complex directly distributed program?

To answer this question, let us briefly review the mechanism that a quorum
replication facility requires. The basic idea of a quorum replication scheme is
that read and write operations must be performed on enough copies of the
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replicated data object to ensure that any pair of writes overlap on at least one
replica and that any read overlaps with the most recent write.

When a quorum scheme is implemented, update operations require two
phases, while read-only operations can be done in one phase. An update is
transmitted during the first phase, and then committed in the second phase if a
quorum of copies were updated and aborted otherwise. The abort is needed to
avoid an uncertain outcome if some processes failed just after doing the update
but before getting a chance to reply. Consequently, recovering processes must
start by determining the status of uncommitted operations that were underway
at the time of the failure.

Now consider the implications of this in a fault-tolerant setting. It will be
impossible to avoid running both reads and writes synchronously (meaning that
neither can be performed on any single data item). The problem is that if we
don’t want writes to block whenever a failure occurs, the write quorum will
necessarily be smaller than the full set of replicas; for example, in a scheme that
will provide continued availability in the presence of two failures, the write
quorum size must be at least two smaller than the total number of copies. To
ensure overlap with the writes, it follows that the read quorum must be larger
than the number of simultancous failures that that must be tolerated, three
copies in the above example. Thus, although read operations can be done in
one phase, they cannot be done on any singie copy of the data item. In light of
this, one sees that although quorum schemes are conceptually casy to describe,
they have important drawbacks.

Specifically, a quorum replication mechanism can be expected to run slowly,
because of the need to execute both reads and updates synchronously (that is,
replies are needed from remote copies of data items before these operations can
be completed). And, a fairly complex recovery mechanism must be imple-
mented to support the multiphase commit done on writes and to handle the
recovery of a process that had a copy of a data item that was being updated at
the time of a failure. If every approach to these problems were equally synchro-
nous, this objection would not be an important one. However, as we will see
below, there are asynchronous alternatives of comparable complexity, and would
normally outperform a fault-tolerant quorum scheme.

Could quorum methods be used to solve the general set of direct distribution
tools enumerated earlier? Consider the token passing problem. It would cer-
tainly be possible to use quorum methods to update variables identifying the
current token holder and request queue. However, one would be faced with the
issue of maintaining a list of processes holding copies of this information. The
problem here is that database systems are fairly static; a copy of a replicated
database may be online or offline, but the set of copies doesn’t change very
often. Thus, databases usually define quorum sizes statically, taking both failed
and operational replicas into account. In contrast, the problem under considera-
tion requires that the set of processes involved change dynamically, with new
processes joining in an unpredictable manner and old members dropping out
permanently. We know of no quorum-based scheme that explicitly supports this
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sort of dynamicism, although some of the extended quorum algorithms
developed by Herlihy (1986b) may be capable of solving this problem. Thus, a
fault-tolerant quorum-based token passing algorithm is likely to be costly both in
terms of code required and the performance that it can achieve, and may prove
restrictive with regard to the degree of dynamic behaviour it can accommodate.

Just as transactions have begun to appear in higher-level systems and
languages, so have quorum replication techniques. In particular, the AVALON
language, which was built on top of CAMELOT, provides mechanisms for
maintaining quorum-based replicated objects in which quorum sizes change
dynamically (Herlihy (1986b)). The approach works well in settings with fre-
quent communication partitioning, site failures and recoveries — in contrast to
some of the methods that will be discussed below, which perform better than
quorum schemes when problems of these sorts do not arise, but may block dur-
ing communication partitioning and impose a high overhead when site failures
and recoveries occur.

15.4.3 The V system

Until now, the systems discussed in this chapter have been those that do not
really support direct interactions between processes. V is an RPC-based system
that simultaneously places a strong emphasis on performance and on providing
system support for forming process groups and broadcasting requests (Cheriton
and Zwaenepoel (1985)). By virtue of supporting process groups, V is able to
address many of the problems in our toolkit. However, V was not designed with
fault-tolerance or distributed consistency as a primary consideration, and pro-
vides little support for the application designer for whom these are major issues.
For example, recall the problem of how a group broadcast mechanism should
work when group membership is changing or processes fail. Although V makes
a ‘best effort’ to deliver messages to all members of a process group, V makes no
absolute guarantees that all receive a given broadcast, or that messages are
received in some consistent order relative to a membership change.

A V-style broadcast is well suited to some types of directly distributed applica-
tions. If an application is broadcasting to a network resource manager, for
example, to find the mailbox for a user, it may not matter very much if some
processes fail to receive the request. It is easy to program around the uncer-
tainty, ensuring that behaviour is correct in all but the most improbable
scenarios. Thus, when broadcasting mailbox location updates, it may not matter
if some processors miss occasional updates (Lampson (1986)). In this example,
and in others with a similar character, the V broadcast primitive is suitable for
implementing replication.

Our token passing problem is no easier to solve in V than in a standard RPC
setting. Similarly, replicated data with a 1-copy behaviour constraint would be
hard to implement on top of the standard V broadcast: if an update fails to get
through, or two updates arrive in different orders at different group members,
the copies could end up with inconsistent values. To solve either problem, a
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non-trivial mechanism would be needed at the application level, and, as noted
carlier, few application designers would be capable of undertaking such a com-
plex and uncertain development effort.

15.4.4 The Linda kernel

One problem with using shared memory in a directly distributed application is
that the processes interacting through the memory are also faced with a complex
synchronization problem. At Yale, Carriero and Gelernter have developed a set
of language extensions that solves both of these problems simultaneously (Carri-
ero and Gelertner (1986)). This enables them to use shared memory as a tool
for building directly distributed software. Before discussing the system in any
detail, it should be noted that the present implementations of Linda are designed
for a different environment than the one that interests us here: parallel proces-
sors, where failure is less of an issue and concurrent execution is paramount. Of
course, this does not rule out a Linda implementation for loosely coupled distri-
buted systems subject to failure, but substantial re-engineering would be needed.
What makes Linda interesting is that it permits simple solutions to some of the
toolkit problems that the mechanisms reviewed above are unable to handle, and
this makes the system particularly interesting in the light of the objectives in this
chapter.

The Linda approach is based on the idea of a shared collection of tuples. The
operations provided are owt (add a tuple to the space), in (read and remove a
tuple) and read (read a tuple without deleting it). Tuples can be extracted by
specifying the values of some fields and just the data types for others. In this
case Linda performs a pattern-matching operation that finds some tuple match-
ing the specified fields and returns the values contained in the remaining fields.
The caller can specify whether or not an in operation should block if it cannot
be immediately satisfied. The basic idea of Linda is to allow a set of processes to
execute tuple-space operations concurrently, but to perform those operations in a
logically (but not necessarily physically) serialized fashion.

There have been several implementations for Linda. Among these is one in
which tn and ouz are broadcast using an ordered protocol and executed in paral-
lel by all processes, one in which out is performed locally, and in broadcast to all
processes, and one that operates by dividing tuple space among the various
processes in such a way that one can map a tuple to its handler using a simple
hash function. That process then resolves the in or out requests presented to it in
the order they arrive. Thus, although the tuple space is conceptually shared, it
is not necessarily physically replicated, and different data objects may be
managed by different processes.

One could casily build a solution to the token-passing problem in Linda. The
token would be represented by a tuple, and the processes would use the blocking
version of ;m to request it and owt to pass it. The solution would be subject to
some limitations, but here one needs to distinguish intrinsic issues from conse-
quences of the engineering decisions made as part of the Linda implementation.
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Neuaatch(holo_list)
{
/* Load workspace with hole descriptions »/
for(each hole in hole_List)
out("to_do"”, hole.x, hole.y, ...);

/+* Wait for all to be processed */
for(each hole in hole_List)

<
/* in will block until outcome is known =/
in("done"”, hole.x, hole.y, int status);
if(status == MUST_CHECK)
print("Must check hole at ../n", hole.x, hole.y);
)
b

Figure 15.1 Generating work for a cell controller in the C-Linda

For example, the dynamic group membership aspect of the problem could be
solved easily in a version of Linda that performs out locally and broadcasts in
operations, but would be much more difficult in a version of Linda that requires
that the set of processes managing the tuple space be static. Another probiem
that arises is that none of the present implementations of Linda can tolerate
failures. If the process that manages some fragment of tuple space process
crashes, that part of tuple space is simply lost. Although one could solve this by
replicating the tuple space, to do so would just push the issues that were
identified above into the Linda implementation, since Linda itself would now
need to implement a correct and fault-tolerant replication mechanism. Thus,
the Linda primitives somehow embody a property that makes it casy to solve
problems like the token passing one. However, solutions to problems like the
replicated data problem are still needed before we can apply this successful
aspect of the Linda system in the general setting of our toolkit.

Linda has been applied successfully in several settings. In the area of parallel
simulation (that is, simulations run on distributed or parallel systems), Linda has
been used primarily to build parallel solutions to a range of problems. Nearly
full utilization of the processors is often cited.

For example, Figure 15.1 and Figure 15.2 illustrate a skeletal solution to the
drilling problem introduce at the start of this chapter, using Linda tuples to
describe the work to be done and the outcome. Each hole to be drilled is
described by a ‘pending work’ tuple. A drill control processor selects a tuple on
which to work, drills the hole, and then outputs a tupie describing the outcome.

Because Linda was not designed to address fault-tolerance, the above code
lacks the mechanism needed to detect failures and generate a list of holes that a
technician should recheck. That is, there is no good way to generate a
MUST_CHECK tuple on behalf of a crashed control process in present versions of
Linda. Likewise, it is hard to see how one could handle dynamic scheduling
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/* A typical drill controller »/
DrillControl()
{
forever
€
in('"to_do”, int x, int y, ...);

/* Position the drill, then make the hole 2/
PositionDrillix, y);
outcome = DrillHole(HoleSpecs);

/* Record outcome */
out("done", x, y, outcome);

Figure 15.2 A control process for a single drill

using Linda’s tuple-matching mechanism. The problem here is that the
language lacks a way for the user to provide a tuple selection criteria. Thus, to
plck the optimal hole subject to some user-specified metric, such as the hole that
minimizes the total expected driiling time, it would seem necessary to examine
the full set of tuples. (Of course, there may well exist a clever encoding of the
problem into a tuple-space data structure that would efficiently solve this.) One
could also certainly imagine extensions of the language in which this problem
could be addressed.

Linda is intriguing because it points to a possible structure for the kind of
problems we are interested in. The esmsential observation is that when all
processes in a system cooperate through a mechanism that orders elementary
operations that might interfere with one another, distributed consistency is
surprising easy to achieve. As shown below, by substituting ordered reliable
broadcasts for ordered tuple-space operations, one can implement fault-tolerant
solutions to most of the issues that the toolkit raises. Just as the partial solution
to the drilling problem shown above arises naturally out of the structure that
Linda suggests, fault-tolerant solutions to the other problems in the toolkit result
from this extended approach.

15.4.5 The HAS system

At IBM, the HAS project explored a closely related approach. HAS supports
A-common storage, which is much like the Linda tuple space but defined in terms
of abstract operations on a shared memory. As in the case of the real-time
broadcast protocol discussed in Chapter 14, updates are completed within a
period of time bracketed by upper and lower bounds expressed in terms of a
computed parameter, A. That is, no update can be completed in less than a cer-
tain minimum time, but neither will any be delayed for longer than a specified
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maximum time. In addition to the shared memory abstraction. HAS provides a
processor grouping mechanism on top of this layer of protocols, like the one sug-
gested for individual processes but at a coarser granularity (Cristian ef al. (1986);
Cristian (1988)).

In contrast to Linda, HAS was designed for use in loosely coupled processors
communicating on high speed point-to-point channels as well as broadcast
media such as token rings, and subject to a variety of failure modes. Moreover,
the HAS methodology provides tolerance to a range of failures including Byzan-
tine failure modes in which processes can behave in arbitrary malicious ways
and experience bizarre clock failures. However, any protocol that would actu-
ally tolerate worst case behaviour for a wide range of possible failure modes
would perform very poorly, translating to a very long minimum delay when
updating the shared memory. To arrive at a practical facility, the group
exploited the observed failure characteristics of this environment, which permit-
ted them to make a trade off between the types of failures that their implemen-
tation actually tolerates and its performance. For a realistic scenario, with rela-
tively high speed processors on a fast token ring, this approach resulted in a
real-time atomic delivery protocols in which the minimum delay to update the
shared memory was fairly small — of the order of 100ms.

With current technology, the HAS approach would not scale well to very
large networks because the real-time performance characteristics of such a sys-
tem would be very poor in comparison to the small, closely coupled machines
used to achieve the sort of performance cited above. An open question relates to
how changes in communication hardware and increased processor speeds could
impact on the way the system scales.

15.4.6 The ISIS system

Like Linda and HAS, the ISIS system adopts an approach based on synchro-
nous execution, whereby every process sees the same events in the same order
(Birman and Joseph (1987a)). However, ISIS simultaneously seeks to provide
fault-tolerance, effective replication mechanisms, and good performance in larger
local area networks. The system starts with the observation that synchronous
execution models offer srong advantages. Their primary disadvantage is one of
cost: without hardware support, a distributed lock-step execution performs
poorly. Even with hardware support, a lock-step style of computation does not
scale.

To address this, ISIS provides an :llusion of synchronous execution, in much
the same sense that transactional serializability provides the illusion of a sequen-
tial transaction execution. Whenever possible, ISIS relaxes synchronization in
order to reduce the degree to which processes can delay one another and to
better exploit the parallelism of a distributed environment. We use the term vir-
tual synchrony to refer to this approach, because the system appears to be synchro-
nous but is actually fairly asynchronous. For example, processes are permitted to
initiate an operation asynchronously, by broadcasting a request without pausing
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to wait for a reply.t When this is done, ISIS behaves as if such messages were
delivered immediately, preventing any action that occurs ‘after’ the broadcast
was sent from seeing a system state from ‘before’ the broadcast was sent. Simi-
larly, ISIS delivers broadcasts with common destinations in the same order
everywhere — except when it is possible to infer that the application does not
need such strong ordering. In such cases, ISIS can be told to relax the delivery
ordering rules, which permits it to use a cheaper broadcast protocol.

ISIS differs from Linda and HAS in that it provides a message-oriented
(rather than a shared-memory interface). The basic ISIS facilities include tools
for creating and managing process groups, group broadcast, failure detection
and recovery, distributed execution and synchronization, ctc. A Linda-style
replicated tuple space is easy to implement in ISIS, as is 1-copy replicated data.
Moreover, the implementations can readily be customized to address special
requirements of the application program, such as the selection of the optimal
next hole for a controller to drill. These mechanisms will be examined in more
detail below, and then an example illustrating how ISIS could be used to solve
the driil control problem will be discussed.

15.5 An execution model for virtual synchrony

One desirable feature of systems like ARGUS, CAMELOT, Linda, HAS and
ISIS is that one can write down a model describing the execution environment
they provide. In the case of ARGUS or CAMELOT, the model is based on
nested transactions, and the lowest-level elements are data items and operations
upon them. Models for the latter systems are similar but oriented towards the
representation of synchronous executions. Before looking at virtually synchro-
nous algorithms for the tools enumerated carlier, it will be helpful to start by
defining such a model and giving virtual synchrony a more precise meaning.
The elements of the execution model we will be working with are processes,
process groups, and broadcast events. Broadcast events include more than
group communication. Point-to-point messages arc treated as a broadcast to a
singleton process-group. Failures are treated as a kind of broadcast too: a last
message from the dying process informing any interested parties of its demise.
Data items are not explicitly represented, although one can superimpose a

t Note the difference between this and an RPC, where such a pause is built in even if no reply is
desired. For example, on the SUN 3 version of ISIS a program that issues an asynchronous broad-
cast to 5 destinations would resume executing after a delay lasting for a small fraction of a mil-
lisecond. The remote message deliveries occur within 5-10 milliseconds. With RPC, which has a 10
millisecond round-trip time under UNIX on a SUN 3, the caller would be delayed by 50 mil-
liseconds, plus any costs asociated with the group addressing protocol. Delivery would take as long
as 45 milliseconds between the start of the broadcast and the arrival of the last message. On systerns
with faster processors and cheaper RPC costs, the costs here might scale, but the same argument
could still be made. The advantage is that when ISIS sends acknowledgement memages, it overiaps
them with concurrent execution in the sender, winning improved performance.



336 K.P. BIRMAN AND T. A. JOSEPH

higher level on top of this basic model in which operations and the values of
data become explicit.

15.5.1 Modelling a synchronous execution

One way to understand a model is as a formalism for writing down what an
‘external observer’ might see when watching the system execute from somewhere
outside of it. The external observer provides a notion of global time to relate the
actions taken by distinct processes. One defines an execution to be synchronous if
the external observer can confirm that whenever two processes observe the same
event, they do so at the same instant in time. This is illustrated in Figure 15.3,
where time advances from top to bottom.

P, P 5 52 S
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GAA'_\D S, = P, + Service
- 3
/ \

K. .. .. S, fails

—_—
’\~| P, > Service

] \j

] \

Figure 15.3 A synchronous execution. A pair of client processes,
identified as P, and P, interact with a proces group containing
three server processes. Execution advances from top to bottom in a
lock-step manner. Several message exchanges and a failure are
shown.

Y

In a synchronous model it is easy to specify the meaning of an atomic (‘all or
nothing’) broadcast to a process group. At the time at which a broadcast is
delivered, it must be delivered to all current members of the group. Thus the set
of destinations is determined by the event sequence (processes joining or leaving
the group) that occurred prior to that time. This does not tell us how to imple-
ment such a broadcast, but it does give a rule for deciding whether a broadcast
is a atomic or not. We will be making use of this rule below.

Of the systems discussed above, Linda comes closest to providing a synchro-
nous execution. However, a genuinely synchronous execution would be
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Figure 15.4 A loosely synchronous execution

impractical to implement in a local area networking environment. To do so, all
the processes would need access to a common clock and to execute at fixed
speeds, neither of which is normally possible.

15.5.2 Modelling a loosely synchronous execution

An execution is said to be lbasely synchronous if all processes observe events in the
same order. Figure 15.4 illustrates such an execution. An external observer who
notes the time at which events are executed may see the same event processed at
different times by different processes. However, the events will still be executed
in the same order as they would have been in a truly synchronous execution.
Hence, if the system is not a real-time one (and this is something we assumed at
the outset), processes that bchaved correctly in a truly synchronous setting
should still behave correctly in a loosely synchronous one (Neiger and Toueg
(1987)).

More formally, for every loosely synchronous execution £, there exists an
equivalent truly synchronous execution £. The two executions are equivalent in
the following sense. Let E, be the sequence of events observed by process p in
an exccution £. Then E’, = E, for all p, that is, every process observes the
same sequence of events in £ and E’. Unless a process has access to a real-time
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clock, it cannot distinguish between £ and £, Figure 15.4 is indistinguishable
from Figure 15.3 by this definition.

Any synchronous system is also loosely synchronous. Thus, Linda and HAS
are both loosely synchronous systems; the global event ordering being imposed
by hardware in the former case, and by a software protocol in the latter.

15.5.3 Modelling a virtually synchronous execution

A virtually synchronous execution is related to a loosely synchronous one in much
the same way that a serializable execution is related to a serial one. The charac-
teristic of a virtually synchronous system is that although an external observer
may see cases in which events occur in different orders at different processes, the
processes themselves are unable to detect this. For example, Figure 15.5 is a
copy of Figure 15.4 with the delivery of event a delayed to occur after b at one
destination. This execution would be called virtually synchronous if, after both a
and ) have terminated, no process in the system can contradict a claim that ¢
executed first cverywhere. Evidence of the order in which operations took place
could be explicit in the value of some variable, or it could be reflected in the
response to one of the requests or the actions that a process took after receiving
some request.
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Figure 15.5 A virtually synchronous execution




One problem with the sort of relaxation of order seen here is that it looks very
narrow in applicability. For it to be of interest, one nceds to be able to identify
relaxations that can be applied in a systematic manner and actually correspond
to protocols of different cost. In particular, it is highly advantageous to substi-
tute a one-phase broadcast protocol for a two-phase protocol, and this is the sort
of relaxation of ordering that we are after here. The idea in building a virtually
synchronous system is to look for such cases and to exploit them. This was also
our hidden motive in introducing a list of tools. Whereas it is unlikely that one
could systematically find ways to relax order in arbitrary applications, it is
entirely reasonable to do so in applications that are uniformly structured and
interact primarily through standard ‘toolkit’ interfaces. In such a setting, one
could optimize the tools as a way of optimizing all the application software that
later gets built on them.

Recalling the definition of loose synchrony in the previous section, an execu-
tion E is virtually synchronous if there exists some truly synchronous execution £’
equivalent to E. However, we broaden our notion of equivalence between exe-
cutions by requiring only that £’ = E,, for all p. Here ‘~’ means that two
event sequences are indistinguishable, but not necessarily identical. The determi-
nation of which event sequences are distinguishable depends on the semantics of
the individual events in a particular application. A formal definition of this sort
of equivalence and a theory of virtual synchrony have been developed by
Schmuck (1988).

15.6 Comparing virtual synchrony with other models

15.6.1 Transactional serializability

Is our model really any different than a transactional one? We argue that vir-
tual synchrony is a substantial generalization of transactional serializability.

Clearly, if a system is serializable, it is virtuaily synchronous. On the other
hand, a virtually synchronous execution need not be serializable. First, there is
nothing like a transaction in a virtually synchronous system. Consider a pair of
processes, executing concurrently, that interchange a series of messages leading
to a dependency of each on the state of the other. In a transactional setting, this
could only occur if each interaction was a separate top-level transaction — a
series of atomic actions with no subsuming transactions at all. However, trans-
actional work has generally not considered this case directly, and it is normally
not even stated that the serialization order for such top-level actions should be
the order in which they were initiated. For many concurrency control schemes,
such as two-phase locking, there is no a priori reason that this would be the
case: a single transaction might asynchronously initiate two top-level trans-
actions, first T, and then T, which would be serialized in the order T’ fol-
lowed by T,.

t For example, 7, might block waiting for a lock and then update variabie x, while T'; acquires its
locks and manages to update x before T',.

357
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Virtual synchrony imposes an explicit correctness constraint on sequences of
interactions like this, namely that unless the order is irrelevant, the events must
be observed in the order they were initiated, even if they were initiated asyn-
chronously, and even if order arises through a very indirect dependency of one
action on another. Moreover, virtual synchrony talks about process groups and
distributed events (broadcasts, failures, group membership changes, and so
forth). None of these issues arise in a conventional transactional setting. In light
of their importance within the directly distributed tools we listed earlier, and the
apparent difficulty of layering them on top of transactions, these are significant
differences.

Transactions and virtual synchrony both depend strongly on the semantics of
operations. In the case of transactions, this was first observed when an attempt
was made to extend transactional serializability to cover abstract data types
(Schwarz and Spector (1984)). Whereas it is easy to talk about concurrency con-
trol and serializability for transactions that read and write (possibly replicated)
data items, it is much harder to obtain good solutions to these problems for trans-
actions on abstract data types. In the case of virtual synchrony, the problem
arises because the model lacks data items or any other fixed referent with well-
known semantics. One can only decide if an execution is virtually synchronous if
one knows a great deal about how the system executes. This is an advantage in
that the definition is considerably more powerful than any data-oriented one.
There are many virtually synchronous systems that could not be interpreted as
synchronous by somehow making the model knowledgeable about data. On the
other hand, the presence of semantic knowledge makes it hard to talk about
correct or efficient system behaviour in general terms, without knowing what the
system is doing. As we will see shortly, one can only do this through a detailed
analysis of those algorithms on which a particular system relies.

15.6.2 Virtual synchrony in quorum-based schemes

Earlier, some examples were given of how a quorum scheme might be used to
obtain consistent behaviour in a relatively unstructured setting. Such an
approach can be understood as a form of virtual synchrony. The basic charac-
teristic of a quorum scheme is its quorum mtersection relation, which specifies how
large the quorums for each type of operation must be (Herlihy (1986b)). If two
operations potentially conflict — that is, if the outcome of one could be
influenced by the outcome of the other — then their quorums will intersect at
one or more processes. Thus one can build a partial order on operations, such
that all conflicting operations are totally ordered relative to one another, while
non-conflicting operations are unordered. Since non-conflicting operatians
always commute, the executions of a quorum-based system are indistinguishable
from any extension of this order into a total one. Such a total order can be
understood as a description of a synchronous execution that would have left the
system in the same state as it was in after the quorum execution. Thus, a
quorum execution is virtually synchronous.
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15.7 System support for virtual synchrony

15.7.1 The ISIS virtually synchronous toolkit

Let us now return to the ISIS system and look more carefully at some of the vir-
tually synchronous algorithms on which it is based.

15.7.2 Groups and group communication

The lowest level of ISIS provides process groups and three broadcast primitives
for group communication, called CBCAST, ABCAST and GBCAST. The prim-
itives were discussed in Chapter 14, and their integration into a common frame-
work supporting group addressing is covered elsewhere (Birman and Joseph
(1987b)). We therefore focus on their joint behaviour while omitting implemen-
tation details.

In ISIS, a process group is an association between a group address and some set
of members. Membership in a process group has low overhead, so it is assumed
that processes join and leave groups casually and that one process may be a
member of several groups.

A uview of a process group is a list of its members, ordered by the amount of time
they have belonged to the group. ISIS includes tools for determining the current
view of a process group and for being notified of each view change that occurs.
All members see the same sequence of views and changes.

The destination of a broadcast in ISIS is specified as a list of groups. Group
membership changes are synchronized with communication, so that a given
broadcast will be delivered to the members of a group in the same membership
view.

Recall that a broadcast is atomic if it is delivered to al/ members of each desti-
nation group. Here, ‘all’ refers to all the group members listed in the process
group view in which delivery takes place, which may not be the same as the
membership when the broadcast was initiated.} A uvirtually atomic delivery is one
in which all group members tAat stay operational receive the message in the same
view. The ISIS broadcast primitives are all virtually atomic. Thus, the reci-
pient of an ISIS broadcast can look at the ‘current’ group membership (in a vir-
tually synchronous sense) and act on the assumption that all of the listed
processes also received the message. It may subsequently see some of them fail,
perhaps without having acted on the message.

CBCAST, ABCAST and GBCAST differ in their delivery ordering properties.
Before we review these differences, recall the definition of the potential causality
relation on events, — introduced in Chapter 14: ¢ — ¢’ means that there may
have been a flow of information from event ¢ to event ¢’ along a chain of local
actions linked by message passing.

t In ISIS, it will be the same or a subset of the initial membership.
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Let bcast(a) denote the initiation of broadcast a and deliver(a) the delivery of
some a to some destination. All three types of broadcast ensure that if beast(a) —
beast(b) for broadcasts a and & (below, a — 4), then deliwer(a) will precede
deliver(b) at any common destinations. In fact, they satisfy an even stronger pro-
perty, namely that if a — b then, even if a and b have no common destinations,
b will be delivered only if @ can be delivered too. This ensures that if some sub-
sequent broadcast ¢ is done, with 4 — ¢, and a and ¢ have common destinations,
the system will be able to respect its delivery order constraints. The ISIS
delivery ordering constraint can be thought of as a FIFO rule based not on the
order in which individual processes transmitted broadcasts, but on the order in
which threads of control did so. Here, a thread of control is any path along
which execution may have proceeded.

CBCAST satisfies exactly the above delivery constraint. If ¢ and 5 are con-
current, then CBCAST might deliver a and & in different orders. ABCAST pro-
vides a delivery order that extends — so that if a and b are two concurrent
ABCASTS, a delivery order will be picked and respected at all shared destina-
tions. However, ABCAST and CBCAST are unordered with respect to each
other. GBCAST, in contrast, provides totally ordered delivery with respect to all
sorts of broadcasts. Thus, if g is 2 GBCAST and a is any sort of broadcast then
£ and a will be delivered in a fixed relative order to all shared destinations.

A system that uses only ABCAST to transmit broadcasts is loosely synchro-
nous. For this reason, ISIS uses ABCAST as its default protocol unless told oth-
erwise by the programmer. However, ABCAST is costly. Like the quorum pro-
tocols, it sometimes delays message deliveries in a way that would be noticeable
to the sender. CBCAST is much cheaper, especially when invoked asynchro-
nously.t This leads to the question of just when synchronization can be relaxed
by changing an ABCAST to a CBCAST in a broadcast-based algorithm.

15.7.3 When can synchronization be relaxed?

Let us examine the degree to which some specific algorithms depend on the ord-
ering characteristics of the broadcasts used for message transmission. We begin
with some examples drawn from a single process group with fixed membership:

® A replicated tuple space, supporting the Linda o, ow and read operations
but using replicated data to achieve fault-tolerance.

® A shared token, supporting operations to request it, to pass it, and to deter-
mine the current holder.

1 The implementation of ISIS is more complex than the earlier discussion of these protocols made it
appear. For reasons of brevity, the associated issues are not discussed here. However, the reader should
be aware that to make effective use of protocols such as these, a substantial engineering investment is
needed. This ranges from the requirement for a system architecture that imposes low overhead to
heuristics for scaling the protocols to run in large networks and to avoid thrashing when communication
patterns overload the most costly aspects of the protocols (Birman, Joseph, and Schmuck (1989)).
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® Replicated data. There are two cascs: a variable that can be updated and
accessed at will, and a variable that can only be accessed by the holder of a
token (lock) on it. We look only at the second case, as the first one is essen-
tially the same as for the Linda tuple space.

15.7.4 Shared tuple space

Say that we wish to replicate a Linda tuple space (refinements such as fragment-
ing the space using a hashing rule could be superimposed on a solution to this
basic problem). In ISIS, this would be done by having the processes that will
maintain replicas form a process group. What kind of ordering would be needed
here? Except for the read operation, which can be done locally by any process
managing a replica, all operations change the tuple space. Consequently, they
all potentially conflict with one another, suggesting that ABCAST is the
appropriate protocol.

Notice that it is possible to relax the relative ordering when two operations
that affect independent tuples. Could we take advantage of this to replace
ABCAST with a cheaper protocol? Such a protocol would look at the type and
arguments of cach operation. It would chose a global order for operations that
actually conflict with one another, while permitting non-conflicting operations to
execute in arbitrary orders. At first glance, it may sound like one could design a
hybrid protocol that would run in two phases in the case of a conflict but deliver
in one phase if no conflict were found. However, on closer examination one sees
that if the possibility of conflict exists, a two phase protocol is always needed.
The problem is that when an operation ¢ arrives at a replica 7, it is not sufficient
to know that no conflicting operations are underway at r; onc needs to know
that none are underway at any replica. This precludes delivery during the first
phase. But, if two phases will be needed, there is no benefit to be gained by
including a test for conflict. It seems more reasonable to just use a normal
ABCAST.

15.7.5 Shared token

The shared token is intcresting because it admits a variety of possible implemen-
tations. The most synchronous implementation is the casiest to understand. In
this algorithm, both request and pass operations are transmitted using a globally
ordered group broadcast. Members maintain a queue of pending requests. A
token holder wishing to do a pass operation first waits until at least one request
is pending, then broadcasts the pass operation. On receiving such a broadcast,
all processes mark the request at the head of the queue as having been granted.
What if we wanted to use a cheaper broadcast primitive? Since the algorithm
depends on a totally ordered request queue, we cannot usc a cheaper protocol
for sending requests without major algorithmic changes. On the other hand, it
might be possible to use a less ordered protocol for transmitting pass operations.
This, however, raises a subtle issue. It may be possible for a request message to
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reach one group member much earlier (in real time) than some other. If we
change the broadcast primitive, such a sequence could result in a race, where a

subsequent pass operation arrives at a slow process before the request from which
it will be satisfied (Figure 15.6).

P, P, Py P,

P, holds the token initially

/ \\ P, request the token

PAss — ] P, pames the token
0\5 T

Has P, seen the request yet?

v

Figure 15.6 A race could develop when using a weakly ordered
broadcast

] ]

Likewise, a process about to pass the token could decide to satisfy a request that
has already been granted, for example, if it were to receive the token before
receiving the pass message corresponding to that earlier request. Clearly, this
would lead to error.

Fortunately, although the situations described above could arise when using a
totally unordered protocol, or one that is FIFO on a point-to-point basis, it can-
not occur with a CBCAST protocol. To illustrate this, notice that a process can-
not try to pass the token unless it has first requested it and then received it from
some other holder. Let R, denote the 'th token request to be satisfied and P; the
pass done by the process that issued R,. This results in R, > P, and
Vj<i:P; > P. Thu, V;<i:R; > P, In other words, when CBCAST
delivers a particular pass message, the destination will always have received the
prior request operations and vice wersa, eliminating the source of our concern.

This reasoning inspires a further refinement. Why not transmit request opera-
tions using CBCAST as well? The preceding analysis shows that any process
receiving a pass will have received the request to which that pass corresponds.
Thus, the only problem this change would introduce would be due to the loss of
a global request ordering: different processes could now receive requests in
different orders. This means that it would no longer be possible for each process
to determine, in parallel with the others, who is the new holder of the token:
they would have no basis for making consistent decisions. On the other hand,
the decision could be made by the process about to send a pass message. If there
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is no pending request, that process will have to defer its pass until a request turns
up. Given a pass message that indicates the identity of the new holder, all
processes can find and remove the corresponding request from their <~t of pend-
ing requests, where it will necessarily be found.

Figure 15.7 illustrates this behaviour schematically. The darker lines show the
path along with the token is passed, which is precisely the equivalent of the —
relation used in the above argument.
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Figure 15.7 A virtually synchronous token-passing algorithm

To summarize, a token-passing problem admits a variety of correct solutions.
The cheapest of these, from the point of view of message transmission, is the
third. It depends only on the ordered delivery of messages that relate to one
another under —. A slight price is paid when a pass operation is carried out
and there is no pending request: the broadcast corresponding to the pass must be
delayed, and this will have the effect of introducing a delay before the request can
be satisfied when it is finally issued. In the ISIS system, the benefits of using an
asynchronous one-phase protocol to implement the broadcast far outweigh any
delay incurred in this manner.

Token passing is an especially interesting problem because it captures the
essential behaviour of any system with a single locus of control that moves about
the system, but remains unique. Many algorithms and applications have such a
structure. Thus, if the token passing problem can be solved efficiently, there is
some hope for solving a much larger class of problems efficiently as well. Notice
in particular how the final optimization replaced a global ordering decision (in
the ABCAST) with a local one in the sender, and then took advantage of the
fact that the sender holds mutual exclusion to propagate the decision using an
inexpensive protocol. Viewed in this manner, one sces that the original algo-
rithm was discarding ordering information and then paying a price to regenerate
it! The underlying lesson is clear: in constructing efficient order-based
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algorithms, one must make every effort to preserve and exploit any sources of
distributed order available to the application.

15.7.6 Replicated data with mutual exclusion

The usual reason for implementing tokens is to obtain mutual exclusion on a
shared resource or a replicated data item. In an unconstrained setting, like the
Linda tuple space, it has been shown that correct behaviour may require the use
of a synchronous broadcast. What if updates are only done by a process that
holds mutual exclusion on the object being updated, in the form of a token for
ie?

If W} denotes the kth replicated write done by the ith process to hold the
token, we will always have R, - W? — - -- W! > P, Now, since P, denotes
the passing of the token to the process that will next obtain it, it follows that if a
process holds a token, then all write operations done by prior holders precede the
pass operation by which the token was obtained. Thus, if CBCAST is used to
transmit wnife operations, any process holding the token will also see the most
current values of all data guarded by the token.

It follows that l-copy behaviour can be obtained for a replicated variable
using a token-passing and updating scheme implemented entirely with asynchro-
nous one-phase broadcasts. Any process holding the token will ‘know’ it also
possesses an up-to-date state. This kind of knowledge is formalized in Taylor
and Panangaden (1988). Moreover, execution can be done by reading and writ-
ing the local copies of replicated variables without delay — just as for a non-
replicated variable — and leaving the corresponding broadcasts to complete in
the background.

Figure 15.8 illustrates replicated update using token passing in this manner.
All the updates occur along the dark lines that highlight the path along which
the token travels, which is the — relation used in the above argument.
Although the system has the freedom to delay updates or deliver them in
batches, it can never deliver them out of order or pass a token to a process that
has not yet received some pending updates. The algorithm is thus executed as if
updates occurred instantaneously.

What about an application that uses multiple data items, and multiple locks?
The algorithm described above can yield very complex executions in such a set-
ting, because of delayed delivery of update messages and deliveries that can
occur in different orders at different sites. Nonetheless, such a system always has
at least one synchronous giobal execution that would have yielded the same out-
come. To see this, observe that —» for this system is a set of paths like the one
seen in Figure 15.8, each consisting of a sequence of write and pass operations.
These paths cross when a token is passed to some process p that subsequently
receives a second token (Figure 15.9). Such a situation introduces edges that
relate operations in the former path to operations in the latter. Similarly, if a
process reads a data item, all the subsequent actions it takes will be ordered after
all the previous updates to that data item. Although it may be hard to
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Figure 15.8 A virtually synchronous replicated update algorithm

visualize, the resulting — relation is an acyclic partial order. It can therefore be
extended into at least one total order, and in general many such orders, each of
which describes a synchronous global execution that would yield the same values
in all the variables as what the processors actually saw.

Thus, aithough the update algorithm is completely asynchronous and no pro-
cess cver delays except while waiting for a token request to be granted, the exe-
cution is indistinguishable from a completely synchronous one such as would
result from using a quorum write (Herlihy (1986b)) for each update. The per-
formance of our algorithm is much better than that of a synchronous one,
because a synchronous update involves sending messages and then waiting for
responses, whereas an asynchronous update sends messages without stopping to
wait for replies. No process is ever delayed in the execution illustrated by Fig-
ure 15.9, except when waiting for a token to be passed to it.

A similar analysis can be undertaken for replicated data with local read- and
replicated write-locks, although we will not do this here. The existence of local
read-locks implies that write-locks must be acquired synchronously, with each
process granting the lock based on its local state, and the write-lock considered
to be held only when all processes have granted it. This leads to an algorithm
in which read-locks are acquired locally, write-locks are acquired using a syn-
chronous group broadcast, and updates and lock releases are done using asyn-
chronous broadcasts. In a refinement, the breaking of read-locks after failures
can be prevented by asynchronously broadcasting information about pending
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Figure 15.9 Replicated updates with multiple tokens

read-locks in such a way that any updates that depend on a read lock are
related to the read-lock broadcast under —. This method was first proposed by
Joseph and Birman (1986).

15.7.7 Dealing with failures

The analysis of the preceding section overlooks failures and other dynamic group
membership changes. In many applications one wishes to deal with such events
explicitly, for example by granting the token to the next pending request in the
event that the current holder fails. Recall that group membership changes must
be totally ordered with respect to other events in order to ensure the virtual
atomicity of broadcast delivery. Since ISIS does this, any broadcast sent in the
token or update algorithm will be received by all members of the group that
stay operational, and in the same view of the current membership.
Say that the rule to be implemented is:

All group members monitor the holder of the token. If the holder fails, the oldest process
in the group takes over and passes the token on its behalf.



15 EXPLOITING REPLICATION IN DISTRIBUTED SYSTEMS 349

For a solution to be correct, it is necessary to be able to establish two things
about the system. First, because the rule depends on the ordering of group
members by age, this information must be consistent from member to member.
Group views have this property in ISIS.

Secondly, it must be known that any view change reporting a failure will be
ordered after all broadcasts done by the failed process. This ensures that if the
failed process did a pass before dying, ecither no process saw it happen or all
processes saw the broadcast and are already watching the new holder. That is,
if X, is the ith action taken by p and F, denotes the event reporting the failure
of p, we need Vp,i: X, — F,. Certainly, in any synchronous execution a failed
process takes no further actions, hence this condition will also hold for any virtu-
ally synchronous execution.

Thus, one could readily implement a fault-tolerant token-passing algorithm in
a virtually synchronous environment.

Notice that the failure ordering property links the atomicity of one broadcast
to the atomicity of a subsequent one. A conventional atomic broadcast places
an all or nothing requirement on broadcast delivery. But, this does not rule out
the transmission of a broadcast a that will not be delivered anywhere because of
a failure, followed by the transmission of a broadcast b from the same sender
that will be delivered. In a virtually synchronous system, such behaviour is not
permitted.

15.8 Other virtually synchronous tools

Virtually synchronous solutions have been illustrated to two of the problems in
the list of tools enumerated at the start of this chapter: replicated data manage-
ment and synchronization. Let us briefly address the other problems in the list.

15.8.1 Distributed execution

There are several ways to distribute an execution over a set of sites in a virtually
synchronous setting. The ISIS toolkit supports all of the following:

Pool of servers: The Linda system illustrates a style of distributed execution
that called the pool of servers. In this method, a set of processes share a collection
of work-description messages, extracting them one at a time, performing the indi-
cated operation, and then placing a completion message back into the pool for
removal by the process that initiated the work. The approach is simple and
lends itself to environments where the processes composing a service are loosely
coupled and largely independent of one another. It can be made fault-tolerant
by maintaining some sort of ‘work in progress’ trace that can be located when a
process is observed to fail. On the other hand, this method of distributed com-
puting is potentially costly because it relies so heavily on synchronous operations.
Were such a system to access its tuple space frequently, a bottleneck could
develop.
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Redundant computation: A redundant computation is one in which a set of
processes perform identical operations on identical data. The approach was first
proposed by Cooper for use in the Circus system (Cooper (1985)). Redundant
computation has the advantage of fault-tolerance, and when the operation
involves updates to a replicated state it is often the most efficient way to obtain a
replicated 1-copy behaviour. On the other hand, it is unclear why one would
want to use a redundant computation for an operation that does not change the
state of of the processes involved. With the exception of a real-time system
operating under stringent deadlines, where it might increase the probability of
meeting the deadline, such an approach would represent an inefficient use of
computational resources. And, in a computation that is at all deterministic, the
method is clearly inapplicable.

Redundant computation is easily implemented in a virtually synchronous
environment. The event initiating a computation is broadcast to all the
processes that will participate in the computation. They all perform the compu-
tation in parallel and respond to the caller, sending identical results. The caller
can cither continue computing as soon as the first result is received, or wait to
collect replies from all participants.

ISIS does not permit redundant computations to be nested uniess the applica-
tion makes provisions to handle this possibility. In contrast, the Circus system
supports nested redundant computations in a way that is transparent to the user,
even permitting replicated callers to invoke non-idempotent operations and
operations implemented by a group with a replication factor different from that
of the caller. Cooper discusses these problems, as well as mechanisms for guard-
ing against incorrect replies being sent by a faulty group member, in Cooper
(1985).

Coordinator-cobort computation: A coordinator-cohort computation is one
in which a single process executes a request while other processes back it up,
stepping in to take over and complete the request if a failure occurs before the
responsc is sent (Birman and Joseph (1987a)). Such a computation could make
good use of the parallelism inherent in a group of proceses, provided that
different coordinators are picked for different requests (in this way sharing the
load). Moreover, it can be used even in non-deterministic computations. How-
ever, if the distributed state of the processes involved is changed by a request,
the coordinator must distribute the updates made to its cohorts at the end of the
computation. In situations where a redundant computation was a viable possi-
bility, the cost of this style of updating should be weighed against that of run-
ning the entire computation redundantly and eliminating the communication
overhead.

Implementation of a coordinator-cohort computation is easy in a virtually
synchronous setting. The request is broadcast to the group that will perform the
computation. The caller then waits for a single response. In many applications,
the broadcast can be done using a one-phase protocol such as CBCAST,
although this decision requires analysis similar to that used for the token passing
example. The participants take the following actions in parallel. First, they
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rank themselves using such information as the source of the request, the current
membership of the group doing the request, and the length of time that each
member has belonged to the group. Since all see the same values for all of these
system attributes, they all reach consistent decisions. The coordinator starts
computing while the cohorts begin to monitor the membership of the process
group. The coordinator may disseminate information to the cohorts while doing
this, or use mechanisms like the token for synchronization. When the coordina-
tor finishes, it uses CBCAST to atomically reply to the caller and (in the same
broadcast) send a termination message to the cohorts. If a coordinator fails
before finishing, its cohorts react as soon as they observe the failure event (a
broadcast sent prior to the failure is delivered before the failure notification).
The cohorts recompute their ranking, arriving at a new coordinator that ter-
minates the operation. If the original coordinator sent this information while
computing, there are a number of options: the cohorts can spool this and discard
it if a failure occurs, or could apply it to their states and take over from the
coordinator by picking up from where it died.

Unless the application is sensitive to event orderings, this algorithm can be
implemented with asynchronous CBCASTSs. As in the case of the token algo-
rithm, a highly concurrent execution would result.

Subdivided computation: A subdivided computation arises when each parti-
cipant does part of a requested task. The caller collects and assembles these to
obtain a complete result. For example, each member of a process group might
search a portion of a database for items satisfying a query, with the result being
formed by merging the partial results from each subquery. As in the case of a
coordinator-cohort computation, the participants in a subdivided computation
can draw on a number of properties of the environment to divide the computa-
tion. Provided that they all use the same decision rule, they will reach the same
decision. Dealing with failures, however, is problematic in this case. A simple
solution is to identify the results as, for example, ‘part 1 of 3’. A caller that
receives too few replies because some processes have failed can retry the whole

query, or perhaps just the missing part.

15.8.2 System configuration and reconfiguration

Above, the term ‘configuration’ was used as a synonym for the view of processes
groups and processors in the system — that is, a list of the operational members,
ordered by age. However, some systems have a software configuration that aug-
ments this view-based configuration and is also used for deciding how requests
should be processed. This suggests that software designers need access to a broad-
cast primitive like the one ISIS uses to inform process group members of group
membership change. The GBCAST primitive can be used for this purpose.
Because GBCAST is atomic and totally ordered with respect to both CBCAST
and ABCAST, one can use it to transmit updates to a replicated configuration
data structure shared by the members of a process group. Such an update would
otherwise be implemented just like any other update to replicated data, but
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because of the strong ordering property of the GBCAST, all processes see them in
the same order with respect to the arrival of other messages of all kinds. Thus,
when a request arrives or some other event is observed, the extended configuration
can be used as part of the algorithm for deciding how to respond.

15.8.3 Recovery

When a process recovers, it faces a complex problem, which is solved in ISIS by
the process-group join tool. A recovering process starts by attempting to rejoin any
process groups which the application maintains. When invoked, the tool checks to
see if the specified process group already exists and if any other process is trying to
recover simultaneously. A given process will observe one of the following cases:

1. The group never existed before and this process is the first one to join it.
The group is created and the caller’s initialization procedure invoked. If
two processes restart simultaneously, ISIS forces one to wait while the other
recovers.

2. The group already exists. After checking permissions, the system adds the
joining process to the group as a new member, transferring the state of some
operational member as of just before the join took place. The transfer is done
by repeatedly calling user-provided routines that encode the state into mes-
sages and then delivering these to user-provided routines that decode the
messages in the joining process. The entire operation is a single virtually
synchronous event. All the group members see the same set of events up to
the instant of the join, and this is the state that they transfer. After the
transfer, all the members of the group (including the new member) see the
membership change to include the new member, and subsequently all sec
exactly the same sequence of incoming requests (subject to the ordering con-
straints of the protocol used to send those requests).

3. The group previously existed but experienced a total failure. The handling
of this case depends on whether or not the group is maintaining non-volatile
logs and, if so, whether or not this process was one of the last to fail and
consequently has an accurate log; Skeen (1985) gives an algorithm for
deciding this. The former case is treated like case (1). In the latter, a
recovery is initiated out of the log file. If the process is not one of the last
to fail, the system delays the recovery until one of the last group members
to fail has recovered, and then initiates a state transfer as in case (2).

In ISIS, a log file consists of a checkpoint followed by a series of requests
that modify the state. The checkpoint itself is done by performing a state
transfer (see above) into a log file. Thus, recovery out of a log looks like a
state transfer from a previously operational member, followed by the replay
of messages that were received subsequent to the checkpoint and prior to
the failure. Management and recovery from logs in a virtually synchronous
setting has been examined by Kane (1989).
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ISIS obtains its join mechanism by composing several of the tools described
carlier. For example, the state transfer is done using the coordinator cohort tool,
described above. To ensure that this is done at a virtual instant in time, a
GBCAST is used to add the new member to the existing process group, and the
transfer is triggered just before reporting the membership change to the group
members (including the new member). The mechanism is not trivial to imple-
ment, but is still fairly simple. Similarly, solutions to the other aspects of the
problem are constructed out of broadcast protocols and reasoning such as what
we described above for the token passing algorithm.

The ISIS recovery tool illustrates an interesting aspect of virtual synchrony.
On the one hand, the designer thinks about recovery as a series of simple steps:
a site restarts, the recovery manager executed the user’s program, the program
requests that it be added, the request is authenticated, a series of state transfer
messages arrive and finally a new view becomes defined showing the new
member. The sequence is always the same, and no other cvents ever occur
while it is underway. On the other hand, the same designer treats state transfer
as an atomic event (a sort of ‘transaction’) when writing software that may
interact with a group while a recovery may be taking place. The recovery
cither has not happened yet or it is done, seen from outside there are no other
possibilities. Because this eliminates a huge number of possible race conditions
and cases to deal with, a complex mechanism is rendered simple enough for a
novice to use correctly.

15.9 Orthogonality issues

It was observed that for a set of tools to be of practical value they must permit a
step-by-step style of programming. For example, if a distributed program is
built using some set of tools, and it is extended in a way that requires an addi-
tional replicated variable, the only code needed should be for managing and
synchronizing access to the new variable. It should not be necessary to re-
examine all the previous code to ensure that no unexpected interaction will
creep in and break some preexisting algorithm. We say that a set of tools are
orthogonal to onc another if they satisfy this property.

A desirable characteristic of the virtually synchronous environment is that
orthogonality is immediate in algorithms that require just a single broadcast
event, because these broadcasts are virtually synchronous with respect to other
events in the system. For example, since updates to a replicated variable appear
to be synchronous, introducing a coordinator-cohort computation for some other
purpose in a program that uses such updates should not ‘break’ the replicated
data mechanism. More complex mechanisms, such as the ISIS recovery
mechanism, are made to look like a single synchronous event, even when they
involve several distinct subevents. A consequence is that one can build software
in ISIS by starting with a non-distributed program that accepts an RPC-style of
interaction, then extending it into a distributed solution that uses a process group
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and replicated data, introducing a dynamically changing distributed
configuration mechanism, arranging for automated recovery from failure, and so
forth. Each change is virtually synchronous with respect to the prior code,
hence no change will break the pre-existing code. The same advantage applies
in a setting like the Linda system: software here can be developed by debugging
a single process that uses the tuple-space primitives, and once it is operational
replicating this process to the extent desired.

15.10 Scaling, synchrony and virtual synchrony

It has been observed that a genuinely synchronous approach to distributed com-
puting will have scaling problems. Of the framework, listed bove, only HAS
implements such an approach, and its performance degrades quite explicitly as a
function of the number of sites in the network, because a larger network has
larger expected delays over its communication links. This increases the
minimum delay before a broadcast can be delivered, and, because HAS does not
support an asynchronous broadcast, the performance of application software is
directly impacted.

A system like ISIS has a slightly different problem. Here, the basic protocols
are essentially linear in the size of process groups (see Birman, Joseph, and
Schmuck (1989)). However, several parts of ISIS involve algorithms that scale
with the number of sites in the network. To address this issue, a recent version of
ISIS introduced a notion of scope into the system. The idea of this is to restrict
these algorithms to small collections of sites in a way that does not compromise
the correctness of the overall system. The resulting system has been scaled up to
more than one hundred sites without imposing a severe load on any machine,
although process groups must not grow to include more than 20 or 30 members
(here, we assume a 10 Mbit network and 2—5 MIPS workstations). Current
research is now focused on introducing a notion of hierarchy for use when pro-
cess groups get very large. These figures are based on current experience with
those aspects of the ISIS system that will not change when better algorithms are
installed. Thus, ISIS potentially scales to moderately large networks, but is
unlikely to scale up into geographically distributed settings with tens of
thousands or millions of sites. An open question is whether there exists some
other architecture that would yield virtual synchrony and high levels of con-
currency, as does ISIS, but would scale without limit.

Finally, consider the quorum schemes, which also achieve virtual synchrony.
These degrade in a way that is completely determined by the quorum size and
the number of failures to be tolerated. While process groups stay small, one
would expect bounded performance limited by RPC bandwidths, and poorer
than what can be achieved using asynchronous protocols. The quorum
approach is clearly unsuitable for systems that replicate data at very large
numbers of locations.
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To summarize, there seems to be good reason to view virtual synchrony as an
effective programming tool for small and medium size networks, and with the
use of hierarchical structuring techniques should even be able to encompass a
typical medium-size factory or company. In much larger settings, other
approaches yielding weaker correctness guarantees would be needed.

It should also be noted that our collection of tools focuses on programming ‘in
the small’. The design and implementation of software for a factory requires
something more: a methodology for composing larger systems out of smaller
components, and perhaps a collection of tools for programming in the large.
The former would consist of a formalism for describing the behaviour of system
components (which could themselves be substantial distributed systems) and how
components interact with one another, independently of implementation. The
latter would include software for cooperative application development, monitor-
ing dependencies between components of a large system and triggering appropri-
ate action when a change is made, file systems with built in replication, and
mechanisms with which the network can be asked to monitor for arbitrary user-
specified events and to trigger user-specified actions when those events occur.
These are all hard problems, and any treatnent of them is beyond the scope of
this discussion. Moreover, the current state of the art in these areas is painfully
deficient. Substantial progress is necded before it becomes practical to talk
about building effective and robust network solutions to large-scale problems.

15.11 An example of ISIS software and performance

It might be interesting to see a sample of a typical ISIS program. The program
shown below solves the drilling problem in ISIS. In contrast to the Linda solu-
tion, the method is fault-tolerant and supports dynamic process recovery. As
before, the code will be in two parts: the code for a process that issues the origi-
nal work request to the cell controller, and the distributed algorithm run in
parallel by the control processes. We start with the code for making a request:

/* befine a type called hole_t for describing holes */
typedef struct

{
/% Description of hole */
int h x, h_y, cccc /* Description of the hole »/
/* Runtime variables set by algorithm »/
address h_drill; /* Process that will drill it =/
int h_state; /* Status, see below */
Y hole_t;
Adefine H_NULL 0 /* Initial state #/
#define H_ASSIGNED 1 /% h_drill has been set */
Adefine H_DRILLING 2 /* prilling underway */
#define H_DONE 3 /* Hole completed */
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main{)
<
address driller;
int nholes, nreplies, checklistTMAXHOLES], ntocheck;
hole_t holesCMAXHOLES];

<+« initialize nholes and holes(0..nholes-1] ...

/* Lookup address of drill service #/
driller = pg_Llookup("/bldglé/cell22-a/driller");

nreplies = cbcast(driller, WORK_REQ,
/* Message to broadcast */
"{Xd,Xd,..., Xa,Xd}(1", holes, nholes,
1 /% One reply wanted »/,
/* Reply format »/
"{Xd2>[1", checklist, &ntocheck);

if(nreplies != 1)
panic("Drill service is not availablen");
if(ntocheck != Q)
<
printf("Job requires manual recheck. Please checkm”);
for(i = 0; i < ntocheck; i++)
<
hole_t *h = gholeslchecklist{ill;
printf("Hole at Xd,Xd ..Mn", ...);

printf("Type <cr> when finished rechecking: ");
while(getchar() i= ') continue;
b
ces @C ...
b

This program imports the list of entry points from the drill service, which defines
the WORK_REQ entry to which the work request is being transmitted. To a reader
familiar with the C programming language, the code will be sclf-explanatory
except for the arguments to cbcast, which are the group to transmit to (a long
form accepting a list of groups is also supported), the entry point to invoke in
the destination processes, the format of the data to transmit (here, an array of
structure clements), the array itself and its length, the number of replies desired
(1), the format of the expected reply (an array of integers), a place to copy the
reply, and a variable that will be set to the length of the reply array.
The cell controller requires more code:

/* A typical drill controller »/
# include "hole-desc.h"
main()

{
/* Bind the two entry points to handler routines w/
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isis_entry(WORK_REQ, work_req);
isis_entry(DRILLING, drilling);
/* Start 1SIS lightweight task subsystem */
isis_mainloop(restart_task);

}

/% Task to restart this process group member */
restart_task()

{
/% Join or create group, obtain current state */
driller = pg join("/bldg14/cell22-a/driller”,
/% On first time create, call first_time_init */
PG_INIT, first_time_init,
/% On joining an existing system, do state transfer »/
PG_XFER, state_xfer_out, state_xfer_in,
/* Call monitor_routine on membership changes */
PG_MONITOR, monitor_routine,
o;
p

/* Global variables »/
int checklist{MAXHOLES], ntocheck;

/* Reception of a new work request (WORK_REQ entry) #/
work_req(msg)
nessage *msg;
{
int nholes;
hole_t holes[MAXHOLES];
pgroup_vieu *pgy = pg_gotvieu(drillor);

msg_get(msg, "{(Xd,Xd,...,%s,Xd2(]”, holes, &nholes);
for(n = 0; n < nholes; n++)
<
hole_t *h = gholeslnl;
h=>h_who = schedule(h, pgv);
if(<first hole assigned to this process>)
h->h_state = H_DRILLING;
else
h->h_state = H_ASSIGNED;
)
t_fork(drill_task);
ntodrill = nholes;
ntocheck = 0;
cur_req = msg;
send_rep();
>

send_rep()
<
t_wait(8work_done);
if(pg_rank(my_address, driller) == 1)
/» Oldest process replies for group #/
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reply(cur_req, "{Xd}[1", checklist, ntocheck);

cur_req = (messages)0;
)

int drilL_taak_activo;

/* How many failures we can tolerate at a time »/
#define N_FAULTS_TOLERATED 1

drill_task()
{
int done_with, n;
char ansu[N FAULTS_TOLERATED];
++drill_ task act1ve,
n = next holc(ly _address, holes);
while(n Tm ~1)
<
hole_t *h = gholesln];
drill_hole(h);
done_with = n;
n = next_hole(holes);
/* Async. broadcast to informs others of my next action »/
cbcast(driller, DRILLING,
“Xa, Xd,Xd", my _address, n, done _with,
N_FAULTS TOLERATED+1
"Xc" &ansu)
b
-—drill_task_activo;
>

/% Invoked when a DRILLING cbcast is done */
drilling(msg)
<

Rsg_get(msg, "Xa,Xd,Xd”, who, dnext, &done);

/* Update status of holes List »/
holesCdonel.h _state = H_DONE;
if(next != -1)

holesCnextl.h_state = H_DRILLING;

/* When done, awaken send _rep() =/
if(--ntodrill == Q)
t_:ignll(luork_dono);

/* Confirm that we got the nessage */
replyCasg, "Xc", '+');
)

/* When a process fails, reassign its remaining work *»/
monitor_routine(pgv)
pgroup_vicu *pgv;
{
int must_dritl = 0;
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if(pgv->pgv_event != PGV_DIED)
return;

for(h = holes; h < gholesCnholesl; h++)
if(h->h_uho == pgv->pgv_died)

{
if(h->h_stlte == H_ASSIGNED)
{
h=->h_who = schedule(h, pgv);
ifCaddr_ismine(h->h_who))
++must_drill;
>
else if(h->h_state == H_DRILLING)
{
h->h_state = H_DONE;
checklistintocheckl++ = h-holes;
if(--ntodrill == Q)
t_signal(&work_done);
b2
3

if(must_drill && drill_task_active == ()
t_fork{(drill_task);
)

The above code is certainly longer than for the Linda example, and it looks far
more more complex than the Linda example. However, the Linda example was
not fault-tolerant and did not address the scheduling aspects of the problem.
Moreover, our solution is actually quite simple. It works as follows.

Each controller process joins a driller process group. The group as a whole
receives each request by accepting a message to the work_req entry point. In
parallel, all members schedule the work, noting which hole each of the other
processes is currently drilling and marking all others as assigned. A lightweight
task is forked into the background to do the actual drilling; it will share the
address space cell controller with the task running work_req, using a nonpre-
emptive ‘monitor’ style of mutual exclusion under which only one task is execut-
ing at a time, and context switching occurs only when a task pauses to wait for
something. The work_req task now waits for drilling to be completed.

The drill_task operates by drilling the next assigned hole, then broadcasting
to all group members when it finishes this hole and moves on to the next one.
The broadcast must be done synchronously, waiting until enough replies are
received to be sure that the message has reached at least N_FAULTS_TOLERATED
remote destinations (because the sender will receive and reply to its own mes-
sage, we actually wait for one more reply above this threshold). The point here
is to be sure that even if N_FAULTS_TOLERATED drill processes crash, the broadcast
will still be completed because some operational process will have received it.
Each group member marks the previous hole as H_DONE and the next one as
H_DRILLING when this broadcast arrives.

If a process fails, the other group members detect this when their monitor rou-
tines are invoked by ISIS. They reassign work, moving any hole that the failed
process was actually drilling to the check list. Any process that has ceased
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Figure 15.10 Holes drilled per second with a one-second per-hole
delay.

drilling (and hence no longer has an active drill_task spawns a new one at
this time.

A normal ISIS application would also include code for initializing the group at
cold-start time and for transferring the state of the group to a joining member, by
encoding it into one or more messages. This code has been omitted above.

What about performance? Figure 15.10 and Figure 15.11 graph the perfor-
mance of this application program, in holes-per-second drilled by the entire
group as a function of the number of members. These figures were generated on
a network of SUN 3/60 workstations, otherwise idle, running release 3.5 of the
SUN UNIX system and communicating over a 10Mbit Ethernet. Figure 15.11
was based on a control program for which the simulated delay associated with
moving the drill units and drilling holes was 1-second per hole. Figure 15.11
used a delay of zero. In the absence of any ISIS overhead, the first graph would
show a linear speedup and numbers would all be infinite in the second graph.
Thus, the communication overhead imposed by this version of ISIS becomes
significant when the group reaches six members, limiting the attainable speedup
for drilling holes with this delay factor. Since the number of messages sent per
second grows as the square of the size of the group in this example, these curves
are not unreasonable ones. More detailed performance figures for ISIS are
available in Birman and Joseph (1987a), and Birman, Joseph, and Schmuck
(1989).
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Figure 15.11 Holes drilled per second with a zero-second per-hole
delay.

15.12 Theoretical properties of virtually synchronous systems

This chapter concludes with a review of some theoretical results relevant to the
behaviour of virtually synchronous systems.

15.12.1 How faithful can a virtually synchronous execution be to
the physical one?

A system like ISIS seeks to provide the illusion of a synchronous execution while
actually executing asynchronously. Moreover, unlike Linda or HAS, failures are
‘events’ in the virtually synchronous execution model used by ISIS. This leads
to limits on the extent to which the model can be faithful to reality. For exam-
ple, it is impossible to ensure that a virtually synchronous execution will present
failures in the precise sequence that physically occurred with respect to other
events. Specifically, in a situation where the system is about to deliver a broad-
cast, it cannot prevent a physical failure from occurring just as the broadcast
delivery is taking place. At one destination, the failure has occurred ‘after’
delivery, but at the other it is ‘before’ delivery. From this it can be seen that a
system like ISIS might sometimes be forced to claim that a message was
delivered to a process that had actually crashed before delivery took place.
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A relevant theoretical result (Fisher, Lynch, and Patterson (1985)) shows that
it is impossible to reach distributed agreement in an asynchronous system subject
to failures. Additional work along these lines was done by Hadzilacos and
reported in Hadzilacos (1984). These results limit what is achievable in a virtu-
ally synchronous system. In particular, this establishes that ISIS cannot avoid
all risk of incorrectly considering an operational site to have failed.

On the other hand, it is possible for a system to avoid claiming anything incon-
sistent with the observable world. This is done by introducing agreement protocols
to decide what picture of a fundamentally uncertain event to provide in its syn-
chronous world model, and then present this to its users in a consistent manner.
This is what ISIS does. Unless a failed site or process recovers and can be queried
about what it observed just before failing, code that runs in ISIS can never
encounter an inconsistency. Moreover, when there is some doubt about ensuring
that all processes have really observed a broadcast or other event, this can be
arranged by briefly running the system synchronously — for example, by asking
those processes to reply after they have seen the event and waiting for the replies.
This is comparable to deferring external actions in a transactional system until the
transaction has reached the prepared-to-commit stage.

15.12.2 State machine approach

It was suggested above that virtual synchrony be viewed as an extension of
transactional serializability that introduces process groups and atomic group
addressing while eliminating the transactions. Virtual synchrony is at least as
closcly related, however, to work that was done on a theoretical abstraction
called the state machine approach to distributed computing. State machines were
originally introduced by Lamport, and work in the area is surveyed by
Schneider (1986). In this approach, a (static) set of processes interact through a
logically centralized service termed the state machine; the machine chooses an
order in which requests should be executed and delivers them to the participants.
In the terms of this chapter, a statec machine implements a closely synchronous
environment. In most theoretical treatments, state machines are used as a fault-
tolerance mechanism, and described in terms of a Byzantine failure model. This
may be one reason that their practical value was not immediately perceived.
ISIS can then be understood as a state machine implementation that uses a
series of optimizations to make the approach viable in an environment subject to
a less difficult class of failures. To the best of our knowledge, this issue was
never examined directly in a state machine context.

15.12.3 Representing and using IPC context information

There has been other work on communication mechanisms that preserve some
form of ‘context information’, which CBCAST does by constraining the order in
which messages are dclivered. For example, Jefferson’s virtual time approach
implements a causal delivery ordering constraint using rollback (Jefferson
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(1985)). The mechanism operates in a point-to-point communication setting
where messages are timestamped and must be delivered to each process in
increasing timestamp order (this is common in event-based simulation systems).
The problem that arises is that although processes are constrained to use mono-
tonically increasing timestamps for their transmissions, it is impossible to predict
just when any given process will need to transmit to any other. If a message is
received with timestamp ¢, it should be delayed if some other process might send
a message with timestamp ¢’ < ¢ to the same destination. But, without waiting
for all processes to advance beyond time ¢, how can this property be insured? A
virtual time system operates by making the ‘optimistic’ assumption that no such
carlier message will be sent, permitting the delivery of interprocess messages as
soon as they arrive. After delivering a message at time ¢, if a message does
arrive with timestamp ¢ << ¢, the system simply rolls the destination process
back to a time prior to ¢’ (‘unsending’ any messages it issued during this period,
which may trigger further rollbacks), then delivers ¢’ and ¢ in the correct order.
The scheme requires the system to be able to make checkpoints and that roll-
back be cheap. The system of Strom and Yemeni (1985) implements a closely
related programming language.

Notice that the timestamping scheme described above is really intended to
represent time during a discrete simulation, and hence has a different purpose
than the — operator introduced earlier. In contrast, Peterson (1987) (Peterson,
Buchholz, and Schlichting (1989)) has developed a communication mechanism
that represents — explicitly and then uses this to enforce causal delivery order-
ings. His system, Psync, includes a smalil amount of event ordering information
in messages that are sent. On reception of a message, a process can invoke sim-
ple primitives to test whether there may be outstanding prior messages, or to
compare the orders in which two messages were sent. In effect, they permit the
interrogation of —. Peterson has completed an implementation of these primi-
tives in the X-kernel, and used this to build several Psync applications. These
include reliable broadcast protocols with the ordering properties of CBCAST,
ABCAST and GBCAST, although lacking dynamic process group addressing.

15.12.4 When can a problem be solved asynchronously?

Schmuck has looked at the question of when a system specified in terms of syn-
chronous broadcasts can be run correctly using asynchronous ones (Schmuck
(1988)). He defines a system to be asynchronous if it admits an implementation in
which every broadcast can be delivered immediately to its initiating process,
with remote copies of the message being delivered sometime later. Failure
broadcasts are not considered, although they could be added to the model
without changing any of the results. Thus S, is the class of all system
specifications describing problems that can be implemented in this efficient,
asynchronous manner. He also introduces the concept of a lincarization operator, a
function that maps certain partially ordered sets of events to legal histories. In a
theorem he shows that for all specifications S:
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S € Siyn @ 1 a lincarization operator for S.

He proves the only-if direction by showing how to construct an implementation
for a specification S, based on its linearization operator, using a communication
primitive similar to CBCAST. The other direction is proved by contradiction.
The result establishes that Schmuck’s implementation method is complete for the
class S, that is, the method yields a correct implementation for all
specifications § € §,,,,.

Schmuck’s construction method depends on finding a linearization operator
for a given specification. Unfortunately, whether a given specification S is in
Sagme 18 undecidable. It is immediately clear that there exists no general method
for finding a lincarization operator for S. However, Schmuck does propose
methods for solving this problem for certain subclasses of Seonc- The basic
characteristic of these subclasses is that they have linearization operators deter-
mined entirely by commutativity properties of the broadcasts done in the system.
Moreover, Schmuck shows how to construct mixed specifications, in which
CBCAST is used as often as possible, but ABCAST is still available for situations
in which CBCAST cannot be used. These results can be used to ‘automatically’
construct a linearization operator, and hence an optimal asynchronous broadcast
protocol, for a problem like the token-passing ones described above. Interest-
ingly, when we showed that token request, token passing and replicated updates
could be totally ordered along the path the token follows, we esentially
described the construction of a linearization operator for that problem. Thus,
Schmuck’s work formalizes a style of argument of important practical relevance.

Herlihy and Wing have also looked at the cost of achieving ‘locally’ ordered
behaviour in distributed systems. This work develops a theory of linearizability,
a property similar to serializability, but observed from the perspective of the
objects performing operations rather than from the perspective of the processes
acting upon those processes (Herlihy and Wing (1987)).

15.12.5 Knowledge in virtually synchronous systems

Some recent work applies logics of knowledge to protocols similar to CBCAST
and ABCAST. The former problem was examined by Taylor and Panangaden
(1988), who develop a formalism for what they refer to as concwrent common
knowledge. This kind of knowledge is obtained when an asynchronous CBCAST
is performed by a process that subsequently behaves as if all the destinations
received the message at the instant it was sent. In ISIS, such a process will
never encounter evidence to contradict this assumption. Taylor and Panagaden
formally characterize the power of this style of computation, and then use their
results to analyse algorithms like the concurrent update discussed above.

Neiger and Toueg have examined the relationship between the total ordering
of events in an ABCAST protocol and the total ordering that results from incor-
porating a shared real-time clock into a distributed system (Neiger and Toueg
(1987)). They characterize the settings under which a broadcast algorithm
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written to use a distributed clock could be implemented using an ABCAST pro-
tocol and a logical clock (Lamport (1978)).
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